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Mini-Review

Introduction

Flavonoids are secondary metabolites derived from the phenyl-
propanoid pathway and >9,000 flavonoids have been character-
ized in plants.1 Major subgroups of flavonoids that are found 
in most higher plants include chalcones, flavones, flavonols, 
anthocyanins, proanthocyanidins (condensed tannins) and 
aurones.2,3 Diverse functions of flavonoids include UV protec-
tion, sexual reproduction process, defense and flower coloring. 
Even if complex, the biosynthesis of these molecules has been 
well described and numerous enzymatic steps are involved (Fig. 
1).4,5 In Arabidopsis most enzymes implicated in flavonoid bio-
synthesis are encoded by single copy genes, whereas in most plant 
species most genes occur in multigene families.6 Flavonoids are 
synthesized in the cytosol,7 stored in vacuoles,8 and they are also 
known to be present in external rhizosphere through exudation.9 
Moreover, flavonoid synthesis is organ and tissue-dependent, and 
is affected by environmental conditions, such as light intensity, 
temperature and nitrogen.10-12 Flavonoids accumulate specifi-
cally in dividing cells in the root, for example in the lateral root 
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Flavonoids are a group of secondary metabolites derived from 
the phenylpropanoid pathway. They are ubiquitous in the 
plant kingdom and have many diverse functions including key 
roles at different levels of root endosymbioses. while there 
is a lot of information on the role of particular flavonoids in 
the Rhizobium-legume symbiosis, yet their exact role during 
the establishment of arbuscular mycorrhiza and actinorhizal 
symbioses still remains unclear. within the context of the 
latest data suggesting a common symbiotic signaling pathway 
for both plant-fungal and plant bacterial endosymbioses 
between legumes and actinorhiza-forming fagales, this 
mini-review highlights some of the recent studies on the 
three major types of root endosymbioses. implication of the 
molecular knowledge of endosymbioses signaling and genetic 
manipulation of flavonoid biosynthetic pathway on the 
development of strategies for the transfer and optimization of 
nodulation are also discussed.
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and nodule primordia of subterranean clover (Trifolium subter-
raneum),13,14 in the root tip and the lateral root primordia of 
Arabidopsis.15,16

Plant roots form three major types of intracellular endosymbi-
oses in symbiotic relationships with arbuscular mycorrhizal (AM) 
fungi of the group of Glomeromycecota and with nitrogen fixing 
bacteria of the genus Rhizobium and Frankia. At least 80% of all 
angiosperms are able to participate in AM symbiosis while only 
ten families of angiosperms are known to form symbiotic asso-
ciation with nitrogen-fixing bacteria in root nodules.17 In addi-
tion to occurring with rhizobia in the legumes and Ulmaceae, 
nitrogen-fixing symbioses involving root nodules also occur 
with Frankia in some members of Betulaceae, Casuarinaceae, 
Coriariaceae, Datiscaceae, Elaeagnaceae, Myricaceae, Rhamnaceae 
and Rosaceae. Molecular phylogeny of plant groups that engage in 
root nodule symbiosis shows that they all belong to a single clade, 
the Fabid (Eurosid 1).18 Some features of root nodule endosym-
biosis could have been recruited from the more ancient AM sym-
biosis.19,20 Hence, the question of shared mechanisms including 
the control of early signaling events is raised.21,22 Orchestration 
of these early events requires the exchange of signaling mol-
ecules. The rhizobial signal molecule, the so-called nodulation 
(Nod) factors are lipochitooligosaccharides (LCOs), consisting 
of an N-acetylglucosamine backbone, N-acylated on the termi-
nal non-reducing sugar and bearing different substitutions on 
the oligosaccharidic backbone that is symbiosis specific.23 In the 
case of actinorhizal symbiosis, Frankia signals are unknown.24,25 
However, it has been previously shown that Frankia alni 
(ACN14a) produces a root hair deforming factor (RHDF) in 
culture supernatant that reacts with Alnus glutinosa root hair 
cells inducing branching and curling of root hair cells.26 This 
factor was shown to have a molecular weight below 3,000 da, to 
be heat-stable (similar to Rhizobium Nod factor) but also to be 
hydrophilic and to resist to chitinases (contrary to Rhizobium 
Nod factor). In AM symbiosis, it has been suggested that LCOs 
produced by the AM fungus could have a role in the establish-
ment of AM symbiosis.27 The work on the diversity and the role 
in discriminating specificity of LCOs produced by AM fungus is 
still in progress.27 The recent availability of genomic resources in 
AM fungi is opening new possibilities to characterize the genes 
involved in the synthesis of signaling molecules.28
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sativa roots depends on the developmental stage of the 
symbiosis and is induced before mycorrhization suggest-
ing a mycorrhizal-fungal specificity.33 Recent metabolite 
profiling of mycorhizal roots of M. truncatula revealed 
important accumulation of flavonoid at different stages 
of mycorrhization.34 Furthermore, elevated levels of phe-
nylamonialyase (PAL) and chalcone synthase (CHS) 
transcripts were detected in root of Medicago trunculata 
colonized by Glomus versiforme.35 In Trifolium repens the 
different composition of the flavonoids extracted from 
shoots and roots grown with and without the AM fun-
gus clearly shows that the metabolism of these molecules 
is strongly affected when the plant is AM colonized.36

Flavonoids were also found to have positive effects on 
hyphal growth ranging from increased spore germina-
tion to enhanced hyphal growth, hyphal branching and 
formation of secondary spores.37,38 Interestingly, specific 
flavonoid compounds enhanced the level of AM coloni-
zation of roots.39-42 It was also shown that several flavo-
noid compounds present in mycorrhizal roots of white 
clover exhibit different effects on growth parameters of 
two Glomus and Gigaspora species compare with fla-
vonoids exclusively detected in non-mycorrhizal roots. 
This strongly suggests specificity between flavonoids and 
AM genus/species.43 Also, it was tested the effect of bio-
chanin A, a flavonoid isolated from clover roots grown 
under phosphate stress, on root colonization of clover 
and tomato.44 Interestingly, it was found that this com-
pound stimulated root colonization both in clover and 
tomato plants, suggesting that the observed stimulatory 

effect did not depend on the host plant but on the AM fungi.
All together these data suggest that the change of flavonoid 

pattern plays a regulatory role in the first stages of AM coloni-
zation of plant roots and at a later stage of the AM association. 
However, the recent identification of strigolactones in root exu-
dates as host-recognition signals for AM fungi,45 raises the ques-
tion about the flavonoids’ role as general signaling molecules.46 
New studies are now needed to understand the role of these two 
molecules during AM symbiosis and with regard to their pos-
sible interaction.47

Flavonoids and Rhizobium-legume Symbiosis

The Legume family (Fabaceae) includes more than 650 genera, 
18,000 species of angiosperm and is the third largest family of 
flowering plants.48 Legumes provide the largest single source 
of vegetable protein in human diets and livestock feed. Under 
nitrogen limiting conditions they are capable of forming nitro-
gen fixing root nodules in soil in association with rhizobia. 
Flavonoids released by legume roots have been reported to play 
multiple roles at different stages of the nodulation process.29

Flavonoids act as chemo-attractants of rhizobia. The role 
of flavonoids as chemo-attractant to concentrate the compatible 
Rhizobium at the root surface is well documented. Flavonoids 
are released in their greatest amounts near root tips,49,50 and 
optimal concentrations occur near the emerging root hair zone, 

On the plant side, it has been demonstrated that flavonoids 
are essential signals for the establishment of legume nodulation,29 
and are prime candidates in actinorhizal and AM symbioses. 
This review aims to summarize the implication of flavonoids in 
AM symbiosis, and the signaling and control of organogenesis of 
legume nodules and actinorhiza.

Flavonoids and Arbuscular Mycorrhiza

The term “mycorrhiza” refers to a symbiosis between plants and 
soil-borne fungi that colonize the cortical tissues of roots during 
periods of active plant growth. The partners in this association 
belong to the Basidiomycota, Ascomycota or Glomeromycota, 
and about 95% of extant land plants.30 Benefits to fungi are the 
supply of photosynthates to the fungal network located in the 
cortical cells of the plant and the surrounding soil. All water, 
nutrient and photosynthate exchanges occur via the fungal fila-
ment network that bridged soil and plant roots. This makes the 
plants more tolerant to biotic and abiotic stresses.31

Flavonoids have been shown to accumulate in the plant 
host during the process of mycorrhization. It was observed that 
C-glycosylflavone accumulates in phosphate-deficient melon 
roots and it was observed that this compound increased mycorrhi-
zation, suggesting thus that this C-glycosylflavonoid is involved 
in the regulation of mycorrhizal colonization.32 In addition, it 
was showed that accumulation of specific flavonoids in Medicago 

Figure 1. Simplified scheme of the flavonoid biosynthetic pathway adapted from 
reference 4 and 85. Some critical enzymes are indicated and abbreviated as fol-
lows: CHS, chalcone synthase; CHR, chalcone reductase; CHi, chalcone isomerase; 
iFS, isoflavone synthase; iFR, isoflavone reductase; F3H, flavanone-3-hydroxylase; 
F3'H, flavonoide-3'-hydroxylase; F3',5'H, flavonoid-3',5'-hydroxylase; DFR, dihydro-
flavonol reductase; FnS, flavone synthase; FLS, flavonol synthase; LDOX, leucoan-
thocyanidin dioxygenase; LAR, leucanthocyanidin reductase; AnR, anthocyanidin 
reductase. Major classes of end products are emphasized in bold italic.



www.landesbioscience.com Plant Signaling & Behavior 638

forming root nodules as a result of infection by a nitrogen fix-
ing actinomycete called Frankia.72 Statue of research on acti-
norhaizal species was recently reviewed by Pawlowski et al.73

Role in signaling? In actinorhizal plants, although the 
involvement of flavonoids in symbiosis is poorly understood, 
some evidence of a role in chemo-attraction and proliferation 
of Frankia has been reported in reference 24. Benoît and Berry74 
showed that flavonoid-containing preparations from seed washes 
of red alder (Alnus rubra) enhanced nodulation by Frankia in 
this species. These results were reinforced by the observation 
that flavonols (quercetin and kaempferol) contained in black 
alder (Alnus glutinosa) root exudates are able to enhance the 
level of nodulation.75 Moreover, it was demonstrated that root 
hair curling is enhanced by exposure of Frankia to A. glutinosa 
root filtrate.76,77 Recently, the strain specificity in the Myricaceae-
Frankia symbiosis was found to be correlated with plant root 
phenolics.78 The main plant compounds differentially affected 
by Frankia inoculation are phenols, flavonoids and hydroxycin-
namic acids. This work provides evidence that during the initial 
phases of symbiotic interactions, Myricaceae plants adapt their 
secondary metabolism in accordance with the compatibility sta-
tus of Frankia bacterial strains suggesting thus that flavonoids 
might determine the specificity of the microsymbionts.

Role in nodule functioning? The involvement of polyphenols 
in the Casuarina glauca-Frankia symbiosis was investigated.79 
Histological analysis revealed a cell specific accumulation of phe-
nolics in C. glauca nodule lobes, creating a compartmentation in 
the nodule cortex. Histochemical and biochemical analyses indi-
cated that these phenolic compounds belong to the flavan class 
of flavonoids. It was shown that the same compounds were syn-
thesized in nodules and uninfected roots. However, the amount 
of each flavan was dramatically increased in nodules compared 
with uninfected roots. The use of in situ hybridization estab-
lished that chalcone synthase transcripts accumulate in flavan 
containing cells at the apex of the nodule lobe. Laplaze et al.79 
hypothesized that cell specific flavan biosynthesis and accumula-
tion delimit cortical compartments containing Frankia-infected 
cells and might restrict endophyte invasion. The meaning of this 
compartmentation is not understood, but obviously some signal 
exchange with the endophyte is needed for its development. In 
parallel, it was found that the gene coding for chalcone isomer-
ase (CHI) in Elaeagnus umbellate was highly expressed in root 
nodules, with levels increasing during nodule development.80 
The higher expression level of this gene in root nodules was pro-
posed to be associated with defense mechanism against infection 
by Frankia or signal molecules in actinorhizal symbiosis.

More recently, the analysis of a C. glauca root and nodule 
expressed sequence tag (EST) database led to the identifica-
tion of 8 genes coding for enzymes involved in the flavonoid 
biosynthesis pathway: chalcone synthase (CgCHS1), chalcone 
isomerase (CgCHI), isoflavone reductase (CgIFR), flavonone-
3-hydroxylase (CgF3H), flavonoid-3'-hydroxylase (CgF3'H), 
flavonoid-3',5‘-hydroxylase (CgF3'5'H)), dihydroflavonol-4-re-
ductase (CgDFR) and flavonol synthase (CgFLS). A kinetic 
study of the expression of these genes during C. glauca root 
inoculation with Frankia linked with a biochemical study of the 

which is the site for Rhizobium infection.51 Previous studies with 
Sinorhizobium meliloti revealed that certain flavonoids serve as 
chemo-attractants for rhizobia in a specific manner to promote 
bacterial movement toward the roots for establishing contact, 
colonization and infection leading to nodule development.52-55 It 
has also been demonstrated that plant flavonoids act as growth 
regulators of rhizobia.55 For example, daidzein, luteolin-7-O-
glucoside and quercetin-3-O-galactoside from alfalfa were 
found to enhance the growth of Bradyrhizobium japonicum,56 
and S. meliloti,57 respectively.

Flavonoids regulate nod genes expression. In legumes spe-
cific flavonoids released from the roots interact with the Nod 
D protein of Rhizobium to activate transcription of other nod 
genes responsible for the synthesis of lipochitooligosaccharides 
called Nod factors.23 This combination of Nod D proteins with 
flavonoids triggers the production of highly specific Nod signals 
which trigger different modifications in plants including, curl-
ing the tip of a root hair back on itself, trapping the bacteria 
within a pocket, from which they are taken up into a plant-made 
intracellular infection thread.58 In addition, the Nod factors also 
induce cell division, gene expression in the root cortex and peri-
cycle for starting the development of the nodule.59,60 Numbers 
of flavonoids have been shown to induce transcription of nodu-
lation genes.61 This host specificity of rhizobia results in part 
from a Nod D-dependent upregulation of nod genes in response 
to a cocktail of flavonoids in the host plant’s root exudates. In 
Sinohizobium meliloti it was shown that whereas several flavo-
noids stimulated the DNA binding affinity of Nod D1 to nod 
gene promoters only luteolin is capable of promoting the down-
stream changes necessary for nod gene induction.62

Flavonoids and nodule development. The plant hormone 
auxin (3-indolyl acetic acid, IAA) controls virtually all plant 
developmental and physiological processes including stimula-
tion of the first divisions in pericycle,63 which lead to lateral root 
development.64 Auxin is synthesized locally in shoot apices, leaf 
primordial and developing seeds, and is then transported to the 
subapical tissues by polar auxin transport.65 It has been suggested 
that Nod factor perception could induce certain flavonoids that 
inhibit auxin transport causing local auxin accumulation at the 
nodule initiation site leading to the initiation of nodule primor-
dia.66,67 This was recently demonstrated by silencing of chal-
cone synthase in M. truncatula roots using RNA interference.68 
Moreover, silencing different branches of flavonoid pathway in 
M. truncatula showed that the flavonol such as kaempferol is 
most likely to inhibit auxin transport during nodulation.69 All 
these evidences support that flavonoids play a critical role in reg-
ulating cell divisions during nodule development in legumes.70

Flavonoids and Actinorhizal Symbiosis

Actinorhizal plants are dicotyledons distributed among four 
angiosperm orders (Fagales, Cucurbitales, Fabales and Rosales), 
8 families and 24 genera.71 Actinorhizal plants are woody spe-
cies, with the exception of Datisca spp, which are herbaceous 
perennials. They play important roles in land reclamation, for-
estry, agroforestry and horticulture. These plants are capable of 
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flavonoid composition of inoculated roots is 
consistent with the implication of flavonoids 
during actinorhizal symbiosis.81,82

Conclusion

From the results above described, it is evident 
that even if the role of flavonoids has been 
well characterized in Rhizobium/legume 
symbiosis, several question marks still remain 
for their role in the AM and actinorhizal 
symbioses (Fig. 2). Since strigolactones have 
been identified as signaling compounds at the 
pre-symbiotic stage the role of flavonoids pres-
ent in the root exudates could be to regulate 
later stages of the AM interactions.47 In acti-
norhizal symbioses with activation of several 
genes of the flavonoid biosynthetic pathway in 
early stages of the interactions in concert with 
accumulation of flavan in root nodules argue 
for a multiple role as in legumes. Inhibition 
of the flavonoid pathway using RNA inter-
ference has been successful for deciphering 
the crucial roles of flavonoids during legume 
nodulation,70 the same approach could be 
used regarding AM and actinorhizal symbio-
sis. From the plant side, in view of the recent 
finding of a common symbiotic signaling 
pathway for actinorhizal, legume and arbus-
cular mycorrhization,83,84 a major challenge is 
to determine the symbiotic functions of flavonoids both common 
and specific to the three root endosymbioses.85 This could help to 
define strategies to optimize root-rhizosphere interactions or to 
transfer the ability to fix nitrogen in cereal crops in manipulating 
the flavonoid pathway.85,86

Figure 2. Schematic overview of flavonoid functions in the establishment of plant root 
endosymbioses. Flavonoids play an essential role in rhizobium-legume symbiosis as chemoat-
tractant and nod gene inducers. They are suggested to act on mycorrhization by stimulating 
germination of spores and hyphal growth. The recent identification of strigolactones as host-
recognition signals for AM fungi raises the questions about flavonoids as signal molecules in 
AM endosymbioses and of a possible interaction with strigolactones. Recent data suggest also 
a role for flavonoids in actinorhizal symbioses.
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